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Summary. It is proposed to use a norm of a nth order effective Hamiltonian, for 
analyzing the convergence property of the multireference many-body perturba- 
tion theory (MR-MBPT). The utilization of the norm allows us to employ only 
(1) a single number for all the states that we are interested in, and (2) values 
which decreases from the positive side to zero as the order n of the perturbation 
increases. This characteristic features are in contrast to those in the usually used 
scheme where several numbers, namely, the eigenvalues of the target states, 
should be used and they may oscillate around exact eigenvalues. The present 
method has been applied to MR-MBPT calculations of the (H2)2, CH2, and LiH 
molecules based on the multireference versions of Rayleigh-Schr6dinger PT, 
Kirtman-Certain-Hirschfelder PT, and the canonical Van Vleck PT; and fol- 
lowing features are found: (1) the above three versions of the perturbation 
theories have essentially the same convergence property judged from the lower- 
ing of the norm; (2) the lower order truncation of the perturbation series gives 
reasonable solutions; (3) the norm decreases irrespective of the perturbation 
expansion being convergent or divergent for the first several orders (up to about 
the sixth order). 
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1 Introduction 

Many-body perturbation theory (MPBT) [1-12] has been utilized as a conve- 
nient method of taking into account of the electron correlation beyond the 
Hartree-Fock approximation. The single reference version (SR-MBPT) [1-3], 
which is for the system expressed by a single main configuration, is fully 
established and equipped as a standard tool for program systems such as 
GAUSSIAN series [13]. Multireference version (MR-MBPT) [4-12] for the 
system with (quasi-)degeneracy is also getting popular. At actual calculations 
the perturbation expansion is presumed to be convergent; however, it is not 
always the case when the potential energy surfaces are evaluated by the method. 
It is desirable to have a simple and convenient scheme to check whether the 
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expansion is convergent or not. The purpose of the present work is to propose 
this kind of a scheme and to exemplify the scheme by investigating the conver- 
gence properties of some molecules. 

It is too difficult to evaluate the higher order terms by the diagrammatic 
approach beyond the third and fourth orders for MR-MBPT and SR-MBPT, 
respectively, and hence few studies have been done by it. On the contrary, the 
method based on the Hamiltonian matrix is rather straightforward, so many 
works have been done for both the single reference version [14, 15] and the 
multireference version [ 16-18]. 

In these studies of the multireference version, the convergence properties 
have been discussed based on the nth order energies obtained by a diagonaliza- 
tion of the effective Hamiltonian. Although the energy is one of the most 
important quantities in practical studies, it is the effective Hamiltonian that is 
immediately obtainable from the order-by-order calculation of the perturbation 
expansion. Therefore, in order to investigate the convergence properties, the 
examination of the effective Hamiltonian itself is more direct than that of the 
energies. In this article, we investigate the convergence property of the effective 
Hamiltonian by introducing a norm of the Hamiltonian. We have focused on 
clarifying the following aspects: (1) how can the convergence property be 
investigated by the use of the norm of the effective Hamiltonian, (2) how is the 
convergence property for some typical molecules, and (3) how different is the 
convergence property for the several versions of the multireference many-body 
perturbation theories, such as, the Rayleigh-Schr6dinger PT(RS-PT) [4-8], the 
Ki r tman-  Certain-Hirschfelder PT(KCH-PT) [ 19- 21], and the canonical Van 
Vleck PT(CVV-PT) [22]. 

In the subsequent section the norm of the effective Hamiltonian is defined, in 
the third section computational details are given, in the fourth section the 
calculated results are discussed, and concluding remarks are drawn in the last 
section. 

2 Norm of the effective Hamiltonian 

In RS-PT, KCH-PT, and CVV-PT the total Hamiltonian H( =1to+ V) is 
transformed into: 

K = Ho + ~ K (n~ (1) 
n = l  

with K (n~ taking a form of 2 × 2 block diagonal: 

K " (2) 

Here K ~  is for the nth order term of the states which we are to solve. We define 
a norm as a square root of the sum of squared absolute values of all elements in 
the smaller part of the nth order effective Hamiltonian Kee~: 

[] K~)- N =- [~  [(K~)i, 1211/2 . (3) 

The advantages of employing the norm over the usual method, where the nth 
order eigenvalues are employed after summing up the effective Hamiltonian up 
to nth order and diagonalizing it, are that (1) the effective Hamiltonian is an 
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immediately obtained quantity from the order-by-order calculation of  the pertur- 
bation expansion, so that the norm is expected to reflect more directly the 
convergence property than the eigenvalues, (2) the convergence property of  the 
all the states interested in are treated simultaneously in contrast to the eigenvalue 
method, where the analysis should be carried out for each state separately, (3) 
the positiveness of the norm results in a simple behavior of the norm as the order 
n increases, namely, the norm decreases from a positive value to zero, while in 
the eigenvalue method the energy may oscillate around the exact value. 

There are other definitions of a norm of  a matrix: (1) the maximum absolute 
value of elements, (2) a sum of the absolute values of all the elements, and (3) 
the maximum absolute value of the eigenvalues of the matrix. They are, however, 
found not to lead to much different results in the present analysis of the 
convergence property. 

The nth order effective Hamiltonian is, roughly speaking, proportional to V n 
so that the logarithm of the nth order norm is expected to decrease proportional 
to the order of the perturbation. On account of this, the inverse sign of the 
gradient of logll K ~  II with respect to the perturbation order n, can be considered 
as a ra te  of convergence. 

One might consider that it is better to use the error, namely the difference of  
the sum up to the n th order contribution from the exact effective Hamiltonian, 
for the analysis of the convergence property. This notion seems to be plausible, 
but is not practical, since (1) the calculation of  the exact effective Hamiltonian 
is not a simple task, and (2) the finiteness of the numerical accuracy in a 
computer hampers an accurate evaluation of  the error in particular for higher 
orders. 

3 Calculation 

Based on the method given in the previous section, we carried out the perturba- 
tion calculations for some molecules, and investigated the convergence properties 
by the use of the norm of  the nth order contribution to the effective Hamilto- 
nian. The scheme of the partitioning of a total Hamiltonian is that by Epstein 
and Nesbet [25], that is, only the diagonal elements of the total Hamiltonian 
matrix are used as the unperturbed Hamiltonian matrix H0, and all the off-diag- 
onal elements are the perturbation V. The orders of the perturbation expansion 
calculated are up to 100 for RS-PT and KCH-PT,  and 20 for CVV-PT. The 
lowness of  the order in CVV-PT is caused by a very much consumption of a 
computer time, which originates from a non-existence of a formula irrelevant in 
the order n of  the perturbation. However, the convergence property of the 
CVV-PT investigated by up to 20th order would be sufficient for the analysis of  
the convergence property. 

As N-electron functions, we used the confiugration state functions (CSF's), 
which satisfy the space- and spin-symmetry, since they result in a smaller size of 
matrices in the calculation than by the Slater determinants, which are usually 
used in full CI method. From a practical point of view, the smallness of the size 
is essential at the calculation of  contributions from such higher,order terms as 
100. 

The present method is applied to lower electronic states of three molecules, 
namely, 1) dimeric hydrogen molecules ( ( H 2 ) 2 )  , 2) methylene~ (CH2), and 3) 
lithium hydride (LiH). Details of  calculations, such as, geometries, the basis sets, 
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the N-electron state functions (CSF's), and the model spaces, are collected in the 
following: 

(1) (H2)2 '(lAg). The "P4-model" [23] is used as the conformations of four H 
atoms. There, four hydrogen atoms conform (i) a square with the distance of 
2.0 a.u. and (ii) a rectangle with the sides of 2.0 and 2.6 a.u. Three primitive 
s-type Gaussian functions are placed on each atom as the basis set. Their orbital 
exponents are 4.501800, 0.681444, and 0.151398 [24]. All single and double 
excitations from all the possible lAg state functions generated by the use of the 
lowest eight RHF orbitals, lag, 2ag, lb2u , lb3u, 2b3,, lblg, and 2big are included 
as the CSF's. The CSF's with configurations (ag)a(b2u) 2 and (ag)Z(b3u) 2 are 
chosen as model-space functions, since they are degenerate in the square confor- 
mation. 

(2) C H  2 (1A1). The basis set is MIDI-4 [24]. Two geometries are used. One is 
the optimized geometry by the RHF calculation, where the CH bond distance 
and the HCH angle are found to be 2.0963 a.u. and 105.3 degrees, respectively. 
The other is a geometry having 1.2 times elongated CH bonds. The CSF space 
consists of all single and double excitations from all possible 1A 1 state functions 
generated by using the lowest three of al orbitals, two of bl orbitals, and one of 
b 2 orbitals, with lal frozen as a core. Two CSF's ( la1)Z(2a2)Z(lbl)2(3at)  2 and 
(lal)2(2al)2(lbl)2(4aO 2 are the functions in the model space. 
(3) LiH (12;+). The MIDI-1 [24] augmented with a single p-type Gaussian 
function (ff = 0.76) on the lithium atom is used as the basis set. Two geometries 
are used, where the LiH bond length are optimized by the RHF calculation, 
3.1824 a.u., and is elongated to 4.4554 a.u. The CSF's used are full, namely, all 
the N-electron functions having 12;+ symmetry. The model states are 
(10-1)a(20-1)(30"1), (10-1)2(20-1)(40"1), and (lal)2(2a1)(5al). 

Although the CSF spaces of the calculations of (H2)2 and CH 2 are not full, 
it is sufficiently large for the investigation of the convergence properties. Indeed, 
the convergence property in the calculation of LiH, with a reduced CSF space 
from the full, is found to be essentially the same. 

4 Results and discussion 

First of all, to grasp the behavior of the norm in increasing the order n of the 
perturbation expansion, we give an example: the total Hamiltonian 
H( = H0 + V) is the following 2 x 2 matrix: 

= ( - ;  Oa)+(O b bo) (a,b>0), (4) 

whose eigenvalues E+ are: 

E+_ +_(a 2 + b2) m. (5) 

The nth order effective Hamiltonian K ~  ) is now a (1 x 1) matrix, so that its 
element is the nth order energy itself and the norm is its absolute value. There 
is no ambiguity which measure of a norm given previously are used. The per- 
turbation expansion of the energy is just the Taylor expansion of (1 + b2/a2) 1/2 
in E_+ : 
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b2,]1/2 
E+_= +a l +a-~ ] 

=_+a  l + 2 a  2 8 a 4 + ' - ' + ( - 1 )  "-~(2n-3)!!(-2n-)~ a n + . . .  , (6) 

which is convergent if b2/a 2 is less than or equal to one, and is divergent 
otherwise although ( 1 + b2/a 2) 1/2 itself takes a finite value. As can be seen from 
the expansion, only the even order of b contributes to the energy. The results are 
shown in Fig. 1 for the three sets of a and b: (a) a = 1.0, b -- 0.5, (b) a = 0.5, 
b = 0.5, and (c) a = 0.45, b = 0.5. The sets (a), (b), and (c) are the examples of 
rapid convergence, slow convergence, and slow divergence, respectively. Features 
found are that (1) in the case of (a), the norm of  nth order contribution to the 
effective Hamiltonian monotonously decrease, (2) the change of  the norm seems 
to have two stages, one is up to first several orders and the other is the 
subsequent orders, which is more apparent in the cases of  (b) and (c), and (3) 
even in slow divergent case (c) the norm decreases at first several orders. 

Now we give the result for the molecules described in the previous section. 
The norm I[ K ~  I] of the nth order contribution K ~  to the effective Hamiltonian 
Kerr has been calculated (Table 1) and depicted in Fig. 2 for up to the 35th order. 
The tendency of the change of  the norm at higher orders than the 35th is 
essentially the same. All the norms in the figure decrease as n increases, which 
indicates the perturbation expansion is convergent. Features found from the 
figure are as follows: 

(1) All the norms at the orders higher than the sixth are smaller than those 
at the second order to the sixth order. This means that the lower order 
contributions include important interaction in the total Hamiltonian, and there- 
fore, the lower order truncation of the perturbation series gives reasonable 
solutions of both the ground and the excited states. This result agrees with that 
of Knowles et al. concluded for the ground state by the single reference 
perturbation theory [14]. 

(2) The rate of  the lowering of  the norm changes at about sixth order as 
elucidated by solid lines drawn in the figure; initially the lowering is rapid then 
it becomes slower. This type of a decrease of the rapidity of convergence has 
been found in the single reference calculations [14]. We note that the behavior of  
this two-stage lowering is found also in the above example of the 2 x 2 
Hamiltonian matrix. 
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Fig. 1. The logarithm of ten of the norm of nth 
order contribution to the effective Hamiltonian: (a) 
rapid convergent case, (b) slowly convergent case, and 
(e) slowly divergent case 
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Table 1. The norm IIK~II of  the nth  order contribution to the effective Hamil tonian (a.u.). 

Order 1 2 3 4 5 6 7 

(H2) 2 ~ = 2.0 
RS-PT 0.0604227 0.1152107 0.0035343 0.0037054 0.0009328 0.0001522 
KCH-PT  0.0604227 0.1152107 0.0034961 0.0037409 0.0009253 0.0001479 
CVV-PT 0.0604227 0.1152107 0.0034879 0.0036976 0.0009255 0.0001525 

c~ =2 .6  
RS-PT 0.0607751 0.1374467 0.0061244 0.0068273 0.0022970 0.0004134 
K C H - P T  0.0607751 0.1374465 0.0061049 0.0061695 0.0021047 0.0004392 
CVV-PT 0.0607751 0.1374465 0.0056883 0.0064487 0.0022203 0.0003790 

CH 2 r = re 
RS-PT 0.0527405 0.1729374 0.0276498 0.0055501 0.0011871 0.0009240 
KCH-PT  0.0527405 0.1729324 0.0276563 0.0053336 0.0012430 0.0009987 
CVV-PT 0.0527405 0.1729324 0.0275896 0.0054144 0.0011395 0.0009352 

r = 1.2 G 
RS-PT 0.0464480 0.1790188 0.0208590 0.0087538 0.0015451 0.0005650 
KCH-PT  0.0464480 0.1790110 0.0208104 0.0086175 0.0015465 0.0006374 
CVV-PT 0.0464480 0.1790110 0.0208073 0.0086748 0.0015285 0.0005639 

LiH r = G 
RS-PT 0.0303517 0.0766322 0.0162235 0.0036892 0.0028471 0.0010887 
K C H - P T  0.0303517 0.0762923 0.0160619 0.0031771 0.0021247 0.0009814 
CVV-PT 0.0303517 0.0762923 0.0161345 0.0034645 0.0025535 0.0010383 

r = 1 . 4 r  e 

RS-PT 0.0286622 0.0959195 0.0233945 0.0094840 0.0071137 0.0028763 
KCH-PT  0.0286622 0.0953640 0.0224555 0.0075893 0.0057613 0.0027333 
CVV-PT 0.0286622 0.0953640 0.0229016 0.0085707 0.0065104 0.0026317 
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Fig. 2. The logarithm of  ten of the norm of the n th  
order contribution to the effective Hamiltonian (in 
a.u.). The symbol e in (a) stands for the distance 
(a.u.) between two hydrogen molecules, and the r e in 
(b) and (e) stands for the equilibrium bond  length 
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(3) There is no apparent difference in the convergence property among the 
three perturbation methods, namely, RS-PT, KCH-PT,  and CVV-PT. Although 
the norms of  the KCH-PT are smaller than those of the RS-PT at the tenth and 
later orders in CH2 with the elongated CH bonds their behavior is "parallel", 
namely, the differences of the norms do not increase. If  they were increased, the 
KCH-PT can be said to be superior to the others, but they don't. One might 
consider that there is a geometry where the increase of  the differences does take 
place; however, it is not found from the calculations by modifying R~I2-H2, 
R c - n ,  and Ru H with an increment of 0.02 a.u. 

Zarrabian et al. has pointed out [17] for the (H2)2 calculation at the square 
form that the accuracy of the energy began to decrease from the 16th order, but, 
in our calculation no such behavior is found and the energy converged smoothly. 
This difference would come from the difference of the zeroth order N-electron 
functions. 

We have also investigated the cases where the per turbat ion expansion is 
slowly divergent by further increasing the bond distances RH2-H2, R c - H ,  
R u _  H- The divergence occurs caused mainly by the inadequacy of the model 
space to the excited states. The change of the norms are shown in Fig. 3, where 
the results only by the RS-PT method are shown, since other methods give 
similar results. The norms decrease at first several orders, but, they do not 
decrease further at later orders, which is in contrast to the convergent cases 
shown in Fig. 2. The results by Zarrabian et al. noted above corresponds to this 
case. 

It is interesting that even in the case of divergence the norm decreases at 
lower orders. This appears in the case of CH2 most clearly. The norm decreases 
monotonically up to 11 th order, and there the energies become very close to the 
exact values; errors are 1.2 x 10 -6 a.u. and --4.4 x 10 -5 a.u. for the ground and 
the excited states, respectively. The CSF functions in the model spaces are not 
sufficient, which is the cause of the divergence; they, however, remain ones of the 
important functions in these elongated geometries. Then the norm decreases at 
the lower orders. Of course, at higher orders non-existence of other important 
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Fig. 3. Examples of slowly divergent cases: (a) (H2)2, 
(b) CH 2, and (e) LiH. Results are obtained by the 
RS-PT method 
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functions in the model space becomes critical, and hence the divergence takes 
place. 

Finally, we note that the above characteristic feature of the behavior of the 
norm is unaffected by the truncation of the CSF space from the full one, such as 
in the calculations of (H2)2 and CH2. We truncated the full CSF space in the 
LiH calculation in a similar manner to the calculations of (H2)2 and CH2, and 
found essentially the same behavior of the norms. The numerical stability of the 
present results are confirmed by artificial decreases of numerical accuracy at all 
arithmetic operations in a computer by forcing the last several bits to zero. 

5 Concluding remarks 

We have proposed to use the norm of the nth order contribution to the effective 
Hamiltonian for the analysis of the convergence property of the multireference 
many-body perturbation theory (MR-MBPT),  and applied to the Rayleigh- 
Schr6dinger (RS), Kir tman-Cer ta in-Hirschfelder  (KCH),  and the canonical 
Van Vleck ( C W )  perturbation theories for the calculations of (H2)2, CH2, and 
LiH molecules with the Epstein-Nesbet  partitioning of the total Hamiltonian. 
We find that 

(1) The lower order truncation of perturbation series gives reasonable 
solutions as far as the norm of the higher order contribution decrease continu- 
ously, namely in the convergent case, as the order n increases, or does not if the 
norm is almost constant or increases, namely in the divergent case, 

(2) The change of the norm seems to have two stages, one is up to about the 
sixth order and the decrease of the norm is more rapid than in the other stage. 
In this former stage the norm decreases even in the divergent case, and the 
feature of the series being divergent becomes apparent at the later stage, which 
also takes place even with the (2 x 2) Hamiltonian in equation (4). 

(3) The above three perturbation theories, namely, Rayleigh-Schr6dinger 
PT, Kir tman-Certa in-Hirschfelder  PT, and the canonical Van Vleck PT, have 
essentially the same convergence property both at the convergent and the 
divergent cases. 

It is interesting to apply the present method to the perturbation calculations 
with the Moller-Plesset partitioning [26] of the total Hamiltonian, and/or 
non-Har t ree -Fock  orbitals, such as the orbitals of V N - 1  [27], V N - 2  [28] 
potential, or MCSCF orbitals. We expect the present method, which utilizes the 
norm of the nth order contribution to the effective Hamiltonian, allows us to 
analyze the convergence property clearer than by the usual method using the 
eigenvalues of the effective Hamiltonian. 

Acknowledgements. Part of the present calculations is carried out by the use of COLUMBUS [29]. 
All the calculations were performed on a FACOM VP-400 and a VP-2600 at the Data Processing 
Center of Kyoto University. 
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